Influences of an impurity on the transport properties of a one-dimensional antisymmetric spin filter

Jaeshin Park and Hyun C. Lee*
Department of Physics and Basic Science Research Institute, Sogang University, Seoul 121–742, Korea
(Received 6 June 2007; revised manuscript received 3 August 2007; published 19 November 2007)

The influences of an impurity on the spin and the charge transport of a one-dimensional antisymmetric spin filter are investigated using bosonization and Keldysh formulation, and the results are highlighted against those of spinful Luttinger liquids. Due to the dependence of the electron spin orientation on wave number, the spin transport is not affected by the impurity, while the charge transport is essentially identical with that of the spinless one-dimensional Luttinger liquid.

DOI: 10.1103/PhysRevB.76.195319 PACS number(s): 73.21.Hb, 71.10.Pm, 72.10.−d, 73.21.−b

I. INTRODUCTION

The concept of spin filter is an important element in the field of spintronics. One of the most representative mechanisms of filtering is the spin field effect transistor proposed by Datta and Das, which is based on the spin-orbit interaction (SOI). Středa and Šeba proposed an antisymmetric filter (ASF), which employs the Zeeman interaction with in-plane magnetic field (or parallel to quantum wire) as well as Rashba SOI. The interplay of Rashba SOI and the Zeeman interaction with the magnetic field parallel to wire gives rise to an interesting one-dimensional (1D) band structure of quantum wire, where the orientation of electron spin depends on wave number (see Fig. 1). This dependence on wave number causes the charge and the spin degrees of freedom to mix, which is a feature distinct from the well-known spin-charge separation of 1D Luttinger liquid.

The diverse properties of quantum wires in the presence of SOI and/or magnetic field have been studied: the collective excitations, the interplay of Rashba SOI and electron-electron interaction, the optical property, and the transmission/reflection coefficients in the presence of potential step. However, as far as we know, there is no report on the systematic study of charge/spin transport of 1D ASF in the presence of impurity scattering and electron-electron interaction.

Impurities necessarily exist in real materials, and their effects are more pronounced in 1D systems such as quantum wires. Thus, it is important to study the effects of impurities in view of the possible realizations of 1D ASF in low-dimensional nanostructures. In this paper, we investigate the influences of a single spinless impurity on the charge and spin transport properties of 1D ASF. Remarkably, the spin transport is found not to be affected by the impurity, and this is precisely due to the charge-spin mixing effect. This behavior is in sharp contrast with that of spinful LL, where the spin transport is substantially influenced by the impurity scattering [see Eqs. (42) and (66)]. Contrary to the spin conductance, the charge transport is like that of spinless LL. In passing, we mention that in this paper we avoid the delicate problems arising from the contact with leads.

The main results of this paper are the spin and the charge currents of 1D ASF in weak and strong impurity scattering regimes, which are given by Eqs. (33), (40), (59), and (64). This paper is organized as follows: In Sec. II, we introduce 1D ASF and review the previous results, in particular the band structure and the bosonized Hamiltonian. In Sec. III, the impurity Hamiltonian and the coupling to external fields which produce the charge/spin transport are discussed. In Secs. IV and V, the bosonized Hamiltonians are analyzed in the framework of Keldysh formalism, and the charge/spin conductances are calculated in the weak scattering and in the strong scattering regime, respectively. Section VI concludes the paper with a summary and discussions.

In this paper, we heavily rely on the bosonization method and the Keldysh formulation of transport, and the readers are encouraged to find these formulas in other textbooks.

Fig. 1. Upper figure: Solid lines represent the lowest energy band structure of the quantum wire in the absence of the Dresselhaus term (dashed lines are for the zero magnetic field). Note that the Fermi energy lies in the gap. In the figure, B=3 T. The g factor is taken to be approximately 15 (as for InAs). The input parameters are $\eta_B=2 \times 10^{-9}$ eV cm, $m^* = 0.024 m_e$. Lower figure: The spin-up (solid line) and spin-down (dashed line) components of spin-up and spin-down states for the lower $E_c(k)$ band. The input parameters are identical with the upper figure. Note that $(\langle v_g^2 \rangle)^2 = 1 - (\langle v_s^2 \rangle)^2$.

Adapted from Ref. 7.

PHYSICAL REVIEW B 76, 195319 (2007)

1098-0121/2007/76(19)/195319(8) 195319-1 ©2007 The American Physical Society
referred to Ref. 16 for the bosonization and to Refs. 17–19 for the Keldysh method.

II. ONE-DIMENSIONAL ANTISYMMETRIC SPIN FILTER

This section is based on Refs. 4 and 7, and the basic setup, the band structure, and the Hamiltonian of 1D ASF are reviewed. 1D ASF (along the x axis) can be realized by applying the confinement potentials in y and z directions, so that the electrons are forced to move along the x axis. The confinement in the y direction is due to the Rashba electric field. We will consider only the lower one-dimensional subband. Also, a magnetic field is applied along the wire (parallel to the x axis). The 1D single particle Hamiltonian is given by

$$H_1 = \frac{\hbar^2 k^2}{2m} + \eta_k \sigma_z - e_z \sigma_x,$$ \hspace{1cm} (1)

where e_z is the Zeeman energy and η_k is a parameter characterizing the strength of Rashba SOI. Practically, η_k is in the range of $(1 - 10) \times 10^{-9}$ eV cm. By the diagonalization of the Hamiltonian [Eq. (1)], two bands as depicted in Fig. 1 are obtained. When Fermi energy is located in the gap as shown in Fig. 1 and at low energy, it suffices to take into account the lower band only. The energy eigenvalue and the corresponding normalized eigenspinor of the lower band are given by

$$E_{\pm}(k) = \frac{\hbar^2 k^2}{2m} - \sqrt{\eta_k^2 + \epsilon_z^2},$$

$$\xi_{\pm} = \left(\frac{u_{\pm}}{v_{\pm}} \right),$$ \hspace{1cm} (2)

where $A = \sqrt{(\eta_k)^2 + \epsilon_z^2}$,

$$u_{\pm} = \frac{\epsilon_z}{\sqrt{(\eta_k A)^2 + \epsilon_z^2}},$$

$$v_{\pm} = \frac{\eta_k A}{\sqrt{(\eta_k A)^2 + \epsilon_z^2}},$$ \hspace{1cm} (3)

u_{\pm} and v_{\pm} represent the amplitudes for the spin to point in the $+z$ and $-z$ directions, respectively. Figure 1 clearly demonstrates that the spin of left-moving quasiparticles is mostly polarized in the $+z$ direction, while that of right-moving quasiparticles is mostly polarized in the $-z$ direction.

Let a_k be the quasiparticle operator of the lower band. At low energy, we can neglect the quasiparticle excitations of upper band, and the electron operator c_{σ} can be approximately expressed in terms of a_k only.

$$c_{\uparrow}(x) \sim a_k u_{\uparrow}, \quad c_{\downarrow}(x) \sim a_k v_{\downarrow}.$$ \hspace{1cm} (4)

Also, the a-quasiparticle excitations near the left and the right Fermi points are more important than others at low energy, so that the a-quasiparticle operator can be decomposed into the left-moving (ψ_L) and the right-moving (ψ_R) components. Then, the electron operator $c_{\sigma}(x)$ can be expressed in terms of $\psi_{R/L}$ as follows (k_F is a Fermi momentum):

$$c_{\uparrow}(x) \sim u_{k_F} e^{i k_F x} \psi_R(x) + u_{-k_F} e^{-i k_F x} \psi_L(x),$$

$$c_{\downarrow}(x) \sim v_{k_F} e^{i k_F x} \psi_R(x) + v_{-k_F} e^{-i k_F x} \psi_L(x).$$ \hspace{1cm} (5)

The noninteracting Hamiltonian in terms of $\psi_{R/L}$ is given by

$$\mathcal{H}_{\text{non}} = v_F \int_{-L/2}^{L/2} dx [\psi_R^*(x - i\alpha_k) \psi_R + \psi_L^*(x + i\alpha_k) \psi_L],$$ \hspace{1cm} (6)

where v_F is the Fermi velocity. The length of 1D ASF is L.

The electron-electron interaction Hamiltonian projected on the lower band is

$$\mathcal{H}_{\text{int}} = \frac{g_4}{2} \int dx [\rho_R(x) \rho_R(x) + \rho_L(x) \rho_L(x)] + g_2 \int dx [\rho_R(x) \rho_L(x)],$$ \hspace{1cm} (7)

where $g_4 = V_q$ and $g_2 = V_q - \lambda^2 V_{2k_F}$. V_q is a short-range interaction matrix element, so that it is almost momentum independent. Here,

$$\lambda^2 = \frac{\epsilon_z^2}{\epsilon_x^2 + (\eta k_F)^2},$$ \hspace{1cm} (8)

and $\rho_{R/L}(x) = \psi_{R/L}^\dagger(x) \psi_{R/L}(x)$ is the density operator of right- and left-moving quasiparticles.

The bosonized form of the sum of the noninteracting Hamiltonian and the interaction Hamiltonian is given by

$$\mathcal{H}_0 = \pi v_F \left(1 + \frac{g_4}{2 \pi v_F} \right) \int dx [\rho_R(x) \rho_R(x) + \rho_L(x) \rho_L(x)] + g_2 \int dx [\rho_R(x) \rho_L(x)].$$ \hspace{1cm} (9)

It is convenient to define the LL parameter K and the velocity of collective excitation v_0.

$$K = \sqrt{1 + \frac{g_4}{2 \pi v_F} - \frac{g_2}{2 \pi v_F}},$$

$$v_0 = v_F \sqrt{\left(1 + \frac{g_4}{2 \pi} \right)^2 - \frac{g_2^2}{2 \pi}}.$$

(10)

For a repulsive electron-electron interaction, $K < 1$. The action corresponding to the Hamiltonian [Eq. (9)], being expressed in terms of phase fields, is given by

$$S_0 = - \int dt \text{Re} \left\{ \frac{1}{\pi} \overline{\dot{\varphi}} \varphi \dot{\theta} + \frac{v_0}{\pi} \left[K (\bar{\varphi})^2 + \frac{1}{K} (\bar{\varphi})^2 \right] \right\},$$ \hspace{1cm} (11)

where the phase fields θ and ϕ are defined by the following relations:

$$\varphi_k = -\frac{1}{\pi} \int dx \left(-\varphi \dot{\theta} + \frac{v_0}{\pi} K \left(\frac{\varphi}{K} \right)^2 \right),$$

$$\theta_k = \frac{1}{\pi} \int dx \left(K \varphi \dot{\varphi} - \frac{v_0}{\pi} \left(\frac{\varphi}{K} \right)^2 \right).$$
\[\rho_R + \rho_L = \frac{1}{\pi} \partial_\phi \theta + \frac{\hat{N}_R + \hat{N}_L}{L}, \]

\[\rho_R - \rho_L = \frac{1}{\pi} \partial_\phi \theta + \frac{\hat{N}_R - \hat{N}_L}{L}. \] \hspace{1cm} (12)

\(\hat{N}_{R,L} \) is the total number operator of right-/left-moving fermions.

III. IMPURITY HAMILTONIAN AND COUPLING WITH EXTERNAL FIELDS

The scattering by a spinless impurity (located at \(x=0 \)) is described by the following Hamiltonian:

\[\mathcal{H}_{\text{imp}} = V_0 \sum_{\sigma=\uparrow,\downarrow} c_\sigma^\dagger(x=0) c_\sigma(x=0). \] \hspace{1cm} (13)

Projected on the lower band using Eq. (5), the impurity Hamiltonian [Eq. (13)] becomes

\[\mathcal{H}_{\text{imp}} = (V_0 \lambda)(2 \pi a)[\psi_\uparrow^0(0) \psi_\uparrow(0) + \psi_\downarrow^0(0) \psi_\downarrow(0)]. \] \hspace{1cm} (14)

where \(a \) is a short distance cutoff of the order of lattice spacing and the unimportant forward scattering terms are omitted. Note that the backscattering amplitude is suppressed by a factor \(\lambda \) which is just an overlap of two spinors at \(k = \pm k_F \). Thus, this suppression is a consequence of charge-spin mixing.

Employing the bosonization formula, we get

\[\mathcal{H}_{\text{imp}} = W_0 F_R^\dagger F_L e^{-i 2 \theta(0,0)} + \text{H.c.}, \] \hspace{1cm} (15)

where \(W_0 = (\lambda V_0)(2 \pi a) \) and \(F_{R,L} \) is the Klein factor.\(^{16} \) The renormalization group flow of impurity scattering strength \(W_0 \) with the Hamiltonian [Eqs. (9) and (15)] is well understood.\(^{14,15} \) The scaling equation is (\(dW_0/d\Lambda = -\frac{\Lambda}{\Lambda} \))

\[\frac{dW_0(l)}{dl} = (1 - K)W_0(l), \] \hspace{1cm} (16)

where \(\Lambda \) is the flowing energy cutoff of the system. If \(K < 1 \) (the repulsive electron-electron interaction), the impurity scattering becomes stronger at lower energy. Therefore, it is natural to divide the problem into two regimes: the weak scattering (or high temperature) regime where the impurity scattering can be treated perturbatively and the strong scattering (or low temperature) regime where we had better start from two disconnected quantum wires which are weakly linked by tunnelings at finite temperature.\(^{14,21} \)

We will compute the charge and the spin transport in two regimes. For transport to occur, some external fields should be applied. For the charge transport, we will apply the potential difference \(V(x) = -\frac{V}{2} \text{sgn}(x) \) across the impurity. Similarly, for the spin transport, the magnetic field difference along the \(z \) axis\(^{15} \) \(B_p(x) = \frac{\theta_0}{2} \text{sgn}(x) \) is applied across the impurity. We emphasize that \(B_p(x) \) has to be distinguished from the magnetic field applied parallel to the wire (along the \(x \) axis), which is necessary for the construction of ASF itself. The probe magnetic field can be applied in an arbitrary direction in the \(y-z \) plane, in general. It turns out that the contribution coming from the \(y \) component of \(\vec{B}_p \) is multiplied by an oscillating factor, \(e^{i 2 \pi y x} \), so that it becomes negligible upon spatial integration.

The Hamiltonian for the interaction with the potential difference is

\[\mathcal{H}_V = \sum_{\sigma=\uparrow,\downarrow} \int dx (-e)V(x) c_\sigma^\dagger(x)c_\sigma(x). \] \hspace{1cm} (17)

After the projection on the lower band using Eq. (5), the bosonized form of \(\mathcal{H}_V \) is given by\(^{22} \)

\[\mathcal{H}_V = \frac{eV}{\pi} \theta(x = 0, t). \] \hspace{1cm} (18)

The Hamiltonian for the interaction with the magnetic field difference in the \(z \) direction is \((\uparrow = +1, \downarrow = -1) \)

\[\mathcal{H}_B = \sum_{\sigma=\uparrow,\downarrow} \int dx \mu_B B_p(x) \sigma c_\sigma^\dagger(x)c_\sigma(x). \] \hspace{1cm} (19)

Again, after the projection to the lower band using Eq. (5), we obtain

\[\mathcal{H}_B = \int dx \mu_B B_p(x)\left[\left(u_{-k_F}^2 - (v_{-k_F}^2) \right) \psi_\downarrow^0(x) \psi_\uparrow(x) + \left(u_{k_F}^2 - (v_{k_F}^2) \right) \psi_\uparrow^0(x) \psi_\downarrow(x)\right] \] \hspace{1cm} (19)

A short computation shows that

\[(u_{-k_F}^2 - (v_{-k_F}^2)) = -\frac{\eta_{k_F}}{\sqrt{\epsilon_z + \eta_{k_F}^2}}. \] \hspace{1cm} (20)

Thus, we arrive at (\(\mathcal{H}_B = -\kappa \mu_B \int dx \psi_\downarrow^0 \psi_\uparrow \psi_\uparrow^0 \psi_\downarrow (x) \))

\[\mathcal{H}_B = -\kappa \mu_B \int dx B_p(x) \frac{1}{\pi} \partial_\phi \theta(x). \] \hspace{1cm} (21)

Evaluating the integral of Eq. (21), we obtain

\[\mathcal{H}_B = \frac{\kappa \mu_B B_0}{\pi} \theta(x = 0, t). \] \hspace{1cm} (22)

In the case of 1D ASF, the couplings to the electric potential and the magnetic field are not independent from each other because \([\theta, \phi] \neq 0 \) in general. This is a feature which is very different from that of spinful LL with spin-charge separation. Elaborating on this point further, it is interesting to compare the Hamiltonian Eqs. (18) and (22) with those of spinful LL.\(^{15,23} \)

\[\mathcal{H}_{V,\text{LL}} = \frac{eV \theta_0(0)}{\pi}, \quad \mathcal{H}_{B,\text{LL}} = \frac{\mu_B B_0 \theta_0(0)}{2\pi}. \] \hspace{1cm} (23)

where \(\theta_p \) and \(\theta_\sigma \) are the charge/spin boson phase field which describes the fluctuations of charge/spin density, and they are independent of each other in the sense of \([\theta_p, \theta_\sigma] = 0 \).
To find the charge and the spin current, we note that the electric potential couples to the charge and the magnetic field couples to the magnetic moment. Then, from Eqs. (18) and (22), the following expressions of charge/spin currents can be deduced:

$$J_q = \frac{(-e)}{\pi} \frac{d}{dt}\langle \theta(0,t) \rangle,$$ \hspace{1cm} (24)

$$J_{\sigma} = (-1) \frac{\kappa}{\pi} \frac{d}{dt}\langle \phi(0,t) \rangle.$$ \hspace{1cm} (25)

Here, $\langle \theta(0,t) \rangle$ and $\langle \phi(0,t) \rangle$ are the averages over the non-equilibrium ensemble. The Keldysh formalism will be employed in computing these nonequilibrium averages.

IV. WEAK SCATTERING REGIME

The total Hamiltonian of the system is [see Eqs. (9) and (15)]

$$\mathcal{H} = \mathcal{H}_0 + \mathcal{H}_{\text{imp}} + \mathcal{H}_S,$$ \hspace{1cm} (26)

where \mathcal{H}_S is the source Hamiltonian for the coupling to the external field. For the computation of charge transport $\mathcal{H}_S = \mathcal{H}_V$ [Eq. (18)], and for the computation of spin transport $\mathcal{H}_S = \mathcal{H}_B$ [Eq. (22)]. In the weak scattering regime, we can treat \mathcal{H}_S perturbatively. In the Keldysh path integral formulation, the key element is the following functional integral:

$$Z = \int D[\theta_{fi}, \phi_{fi}] e^{i S_{\text{Keldysh}} + i S_{\text{imp}} + i S_S},$$ \hspace{1cm} (27)

where θ_{fi}, ϕ_{fi} denote the phase boson fields defined on the forward time branch and the backward time branch of the closed time contour, respectively. S_K is the Keldysh action corresponding to the Hamiltonian [Eq. (9)]. It is basically the difference of the action [Eq. (11)], $S_K = S_0 - S_0$, between the forward and the backward branch, which is essentially expressed in terms of $\theta_{ci} = (\theta \pm \theta_b)/2$ and $\phi_{ci} = (\phi \pm \phi_b)/2$. S_{imp} and S_S are the Keldysh actions for impurity Hamiltonian and the source Hamiltonian \mathcal{H}_S, respectively.

The spin transport. The spin current [Eq. (25)] can be computed easily by the coupling to external sources.\(^\dagger\) The Hamiltonian [Eq. (22)] expressed in the form of the Keldysh source action is

$$S_B = -\frac{\kappa \mu_B}{\pi} \int_{-\infty}^{\infty} dt [B_{0q}(t) \phi_q(0,t) + B_{0q}(t) \phi_q(0,t)],$$ \hspace{1cm} (28)

where B_{0q} is the classical/quantum component of the external magnetic field.\(^\dagger\) The spin current in the 0th order of impurity scattering is

$$J_{\sigma}^{(0)}(t) = i \frac{\kappa \mu_B}{\pi} \frac{d}{dt} \langle Z_{\sigma}^{(0)}[B_{0q}, B_{0q}] \rangle_{B_{0q}=0},$$ \hspace{1cm} (29)

where $Z_{\sigma}^{(0)}[B_{0q}, B_{0q}] = \langle e^{i S_B} \rangle$. Here, the average means the Keldysh functional integral with respect to S_K. Since S_K is Gaussian in $\theta_{c,q}$ and $\phi_{c,q}$, we can use the identity $\langle e^{i X} \rangle = e^{-\langle X \rangle^2/2}$. Employing an identity $\langle \phi_q \phi_q \rangle = 0$, we find

$$J_{\sigma}^{(0)}(t) = \frac{i \kappa \mu_B}{\pi} \int_{-\infty}^{\infty} dt \left[\frac{d}{dt} \langle \phi_q(0,t) \phi_q(0,t) \rangle B_{0q}(t) \right] + \langle \phi_q(0,t) \phi_q(0,t) B_{0q}(t) \rangle = \mu_B \frac{\kappa^2}{2 \pi K} B_{0q}.$$ \hspace{1cm} (30)

where we have used $[\Theta(t)$ is a Heaviside step function]

$$\langle \phi_q(0,t) \phi_q(0,t) \rangle = -\frac{i \pi}{4 K} \Theta(t_1 - t_2).$$

$$\langle \phi_q(0,t_1) \phi_q(0,t_2) \rangle = -\frac{i \pi}{4 K} \Theta(t_2 - t_1).$$ \hspace{1cm} (31)

The first order correction to the spin current by impurity scattering vanishes because a single Klein factor does not conserve a fermion number. As of the second order correction, the above argument does not work since $F_{LR} F_{LR} = 1$ conserves the fermion number. The second order correction is schematically given by

$$J_{\sigma}^{(2)} \approx \frac{d}{dt} \left(\frac{\delta}{\delta B_{0q}(t)} \langle e^{i S_B} S_{\text{imp}} S_{\text{imp}} \rangle \right).$$ \hspace{1cm} (32)

In view of the fact that the impurity scattering is proportional to $e^{i \Theta[0,0]}$, we find that the functional differentiation would generate the Green’s functions only of the type $\langle \theta_{ci}(x = 0,t) \phi_{ci}(x = 0,t') \rangle$, which vanishes identically. Note that this vanishing of the second order correction is solely due to the specific form of the Hamiltonian [Eq. (22)] whose origin can be traced back to the spin-charge mixing effect of 1D ASF. Summarizing the result,

$$J_{\sigma} = \mu_B \frac{\kappa^2}{2 \pi K} B_{0q} = J_{\sigma}^{(0)}, \quad J_{\sigma}^{(1)} = J_{\sigma}^{(2)} = 0.$$ \hspace{1cm} (33)

This is one of the main results of this paper. The corrections can only stem from the failure of linearization approximation, which is necessary for the bosonization approach; therefore, such corrections are expected to be very small at low temperature. From Eq. (33), the spin conductance easily follows,

$$G_{\sigma} = \lim_{B_0 \to 0} \frac{J_{\sigma}}{B_0} = \mu_B \frac{\kappa^2}{2 \pi K} \text{ no corrections.}$$ \hspace{1cm} (34)

The charge transport. The source Hamiltonian necessary for the computation of the charge current is given by Eq. (18), which does not depend on the field ϕ. With ϕ integrated out, the action [Eq. (11)] becomes

$$S_0 = \frac{1}{2 \pi K} \int dt \left[\frac{1}{v} \frac{d}{dt}(\delta \phi \theta)^2 - v (\delta \phi \theta)^2 \right].$$ \hspace{1cm} (35)

This is the action for the spinless LL with LL parameter K. The charge transport based on the action [Eq. (35)] have been calculated by the linear response theory\(^\dagger\) and by the influence functional method.\(^\dagger\)

The calculation of the 0th order charge current is entirely identical with that of the spin current except for the substit-
tution of $\phi \to \theta$ and the change of parameters.

$$J_{p}^{(0)} = \frac{e^2 K}{2 \pi} V. \quad (36)$$

This is just the charge conductance of a one-channel (or spinless) quantum wire. The first order correction due to impurity scattering vanishes again due to the Klein factor. The second order correction is given by

$$J_{p}^{(2)} \propto \frac{d}{dt} \delta \left[d_{t,t_2} \left((e^{2i\delta(t_1)} - e^{2i\delta(t_2)}) (e^{-2i\delta(t_2)}) - e^{2i\delta(t_2)} e^{(e^{i\pi} f d_{t'} (V_{q} + V_{c} - V_{g}))} |_{V_{q} = 0} \right) \right], \quad (37)$$

where the average is done with respect to the Keldysh action S_K. The average is the Gaussian functional integration, and the result turns out to be

$$J_{p}^{(2)} \sim W_0 \int_{-\infty}^{\infty} dt' e^{-2K C(t')} \sin \left(\frac{eVKt'}{2} \right) \sin \left(\frac{\pi K}{2} \sgn(t') \right) \sim W_0 \int_{0}^{\infty} dt' \frac{\sin \left(\frac{eVt'}{2} \right)}{(\tau^2 + \tau_c^2)K} \frac{\sinh(\pi t'/\beta)}{t' \pi \beta} \frac{1}{\pi}, \quad (38)$$

where

$$C(t') = \int_{0}^{\infty} \frac{d\omega \omega}{\omega} e^{-\omega t'} \coth \frac{\beta \omega}{2} [1 - \cos \omega(t')] = \frac{\sqrt{(t')^2 + \tau_c^2}}{\tau_c} + \ln \left(\frac{\sinh(\pi t'/\beta)}{t' \pi \beta} \right). \quad (39)$$

where τ_c is a short-time cutoff. Collecting the previous results, we get (up to the second order in W_0)

$$J_{p} = \frac{e^2 K}{2 \pi} \left[V - c p W_0 \int_{-\infty}^{\infty} dt' \frac{\sin \left(\frac{eVKt'}{2} \right)}{(\tau^2 + \tau_c^2)K} \frac{\sinh(\pi t'/\beta)}{t' \pi \beta} \right], \quad (40)$$

where c_p is a constant. Note that this expression is essentially identical with that by Fisher and Zwerger (Eq. 3.51 of Ref. 24). From Eq. (40), the charge conductance easily follows,

$$G_p = \lim_{V \to 0} \frac{J_{p}}{V} = \frac{e^2 K}{2 \pi} \left[1 - c_p T_{2K-2} \right]. \quad (41)$$

It is very interesting to highlight our results on ASF against those of spinful LL. From Eqs. 3.15 and 3.18 of Ref. 15, we have

$$G_{p,LL} = \frac{e^2 K_p}{\pi} \left[1 - c_1 \left(\frac{\pi T}{\Lambda} \right)^{K_p + K_q - 2} \right],$$

$$G_{p,LL} = \frac{\mu \beta K_q}{\pi} \left[1 - c_2 \left(\frac{\pi T}{\Lambda} \right)^{K_p + K_q - 2} \right], \quad (42)$$

where only the leading terms are indicated. K_p and K_q are the LL parameter for the charge and the spin degrees of freedom, respectively. c_1, c_2 are constants.

The comparison of the charge conductance, Eq. (41), with Eq. (42) shows that the charge transport of 1D ASF essentially behaves like that of spinless LL. However, the LL parameter K depends sensitively on the Rashba SOI and the Zeeman interaction (recall that g_2 depends on them). The spin conductance of 1D ASF [Eq. (34)] is qualitatively different from that of spinful LL [Eq. (42)]. The absence of corrections to the spin conductance of 1D ASF reflects the dependence of the spin orientation on the wave number. The backscattering reverses the momentum, and this degrades charge flow. However, from the viewpoint of spin, the momentum reversed state has the spin orientation which is almost parallel to the one in the absence of impurity, so that the spin current does not degrade. Even the electron-electron interaction cannot modify this property significantly.

V. STRONG SCATTERING REGIME

As mentioned in Sec. III, the proper starting point in the strong scattering regime at zero temperature are two disconnected semi-infinite wires. Finite temperature and external fields make tunneling between two wires possible, and it results in transport. The 1D interacting system with boundary is most conveniently described by the open-boundary bosonization.21 Let us designate two disconnected wires by 1 and 2. For each semi-infinite wire, the boundary condition at the end ($x = 0$) relates the left- and right-moving electrons, so that the left-moving fields can be expressed solely in terms of right-moving fields (as reflected images),

$$\psi_{aL}(x) = -\psi_{aR}(-x), \quad \rho_{aL}(x) = \rho_{aR}(-x), \quad a = 1, 2. \quad (43)$$

The bosonized Hamiltonian of each wire, which is expressed purely in terms of the right moving fields, is

$$\mathcal{H}_a = \pi \left(v_F + \frac{g_4}{2 \pi} \right) \int_{-L/2}^{L/2} dx \rho_{aR}(x) + \frac{g_2}{2} \int_{-L/2}^{L/2} dx \rho_{aR}(x) \rho_{aR}(-x), \quad a = 1, 2. \quad (44)$$

Note that the last term of Eq. (44) is nonlocal in space. It is interesting to compare Eq. (44) with Eq. (9) and to notice how the presence of boundary is reflected in the structure of the Hamiltonian. The density operator in terms of a chiral boson field is given by
\[\rho_{aR}(x) = \frac{\hat{N}_a}{L} + \frac{1}{2\pi} \partial_x \phi_{aR}(x), \]

where \(\hat{N}_a \) is the fermion number operator of the \(a \)th wire. The tunneling between two wires is given by14,21

\[\mathcal{H}_T = t_0 \left[F_{1R} F_{2L} e^{i\phi_{1R}(x=0) - i\phi_{2L}(x=0)} + \text{H.c.} \right]. \]

The comparison of two Hamiltonians [Eqs. (18) and (47)] reveals an important difference in the charge transport mechanism between the weak and the strong scattering regime. The Hamiltonian in the weak scattering regime [Eq. (18)] is given in terms of phase field \(\theta \), which commutes with the Klein factors, while the Hamiltonian in the strong scattering regime [Eq. (47)] does not commute with the Klein factors. Because of this property, it is not feasible to apply the Keldysh formalism on the charge transport in the strong scattering regime.

As for the coupling with the magnetic field difference, starting from Eq. (19), one can derive

\[\mathcal{H}_{Ba} = -\kappa \mu_B \left[\int_{-L/2}^{L/2} dx \left(-\frac{B_0}{2} \left[\rho_{1R}(x) - \rho_{1L}(x) \right] \right) + \int_{-L/2}^{L/2} dx \left(\frac{B_0}{2} \left[\rho_{2R}(x) - \rho_{2L}(x) \right] \right) \right]. \]

Using Eq. (45) [we set \(\phi_{aR}(x=\pm L/2)=0 \)], we obtain

\[\mathcal{H}_{Ba} = \frac{\kappa \mu_B B_0}{2\pi} \left[\phi_{1R}(x=0) + \phi_{2R}(x=0) \right]. \]

The examination of the tunneling and external field Hamiltonians necessitates the introduction of the symmetric and the antisymmetric combinations of operators,

\[\phi_s = \frac{\phi_{1R} + \phi_{2R}}{\sqrt{2}}, \quad \hat{N}_s = \frac{\hat{N}_1 + \hat{N}_2}{2}. \]

Let us also define \(F = F_{1R} F_{2L}^\dagger \), which satisfies the following relations:

\[FF^\dagger = F^\dagger F = 1, \quad [N_s, F] = -F, \quad [N_s, F^\dagger] = 0. \]

In terms of these new fields,

\[\mathcal{H}_T = t_0 \left[F e^{i\frac{\pi}{2} \phi_s(x=0)} + \text{H.c.} \right], \]

\[\mathcal{H}_{Y,s} = -eV\hat{N}_s, \quad \mathcal{H}_{B,a} = -\frac{\kappa \mu_B B_0}{2\pi} \phi_s(x=0), \]

\[\mathcal{H}_1 + \mathcal{H}_2 = \mathcal{H}_{0s} + \mathcal{H}_{0a}, \]

where the Hamiltonians \(\mathcal{H}_{0a} \) (in terms of \(\phi_a \)) are given by

\[\mathcal{H}_{0a} = \frac{(v_F + g_a/2\pi)}{4\pi} \int_{-L/2}^{L/2} dx \partial_x \phi_s(x)^2 + \frac{g_a}{2(2\pi)^2} \times \int_{-L/2}^{L/2} dx dy \delta(x+y) \partial_x \phi_s(x) \partial_y \phi_s(y). \]

As can be seen in Eq. (52), the Zeeman coupling Hamiltonian \(\mathcal{H}_{B,a} \) (which is solely expressed in terms of \(\phi_s \)) is decoupled from the tunneling Hamiltonian (which is solely expressed in terms of \(\phi_a \)), and this implies that the spin transport is not affected by the tunneling.

The Hamiltonian [Eq. (53)] can be diagonalized by the following Bogoliubov transformation:26

\[\phi_s(t, x) = \varphi_s(t, x) \cosh \zeta - \varphi_s(t, -x) \sinh \zeta. \]

After the diagonalization, the corresponding action for the chiral boson \(\varphi_s \) is given by26

\[S_{0s} = -\frac{1}{4\pi} \int_{-\infty}^{\infty} dt \int_{-L/2}^{L/2} dx \partial_t \varphi_s \partial_t \varphi_s \]

\[-\frac{v_0}{4\pi} \int_{-\infty}^{\infty} dt \int_{-L/2}^{L/2} dx (\partial_x \varphi_s)^2, \]

where \(K \) and \(v_0 \) are the same LL parameter and the velocity of collective excitation in the weak scattering regime given in Eq. (10). The Bogoliubov parameters are

\[\cosh \zeta = \frac{K + K^{-1}}{2}, \quad \sinh \zeta = -\frac{K - K^{-1}}{2}. \]

From Eqs. (54) and (56), we find that when the field is near the boundary,

\[\varphi_s(x \rightarrow 0, t) = \frac{1}{K} \varphi_s(x \rightarrow 0, t). \]

The spin transport. For the spin transport, we can still apply the Keldysh formalism. The spin current can be calculated by

\[J_s(t) = i\mu_B \frac{d}{dt} \langle \varphi_s(t) \rangle_{\varphi_s=0}, \]

\[S_B = \frac{\mu_B K}{\sqrt{2\pi}} \int dt [B_0(t) \varphi_s(t) + B_0(t) \varphi_s(t)]. \]

The calculation is entirely identical with that of the weak scattering case

\[J_s(t) = \frac{\mu_B K}{2\pi} B_0 \]

where we have used \(\langle \varphi_s(t_1) \varphi_s(t_2) \rangle = -i\pi K \Theta(t_1 - t_2)/2 \). This result is the same as that of the weak scattering regime. It indicates that the impurity is basically decoupled from the spin degrees of freedom. The spin conductance is

\[G_0 = \left| \frac{J_0}{B_0} \right|_{0} = \frac{\mu_B K^2}{2\pi K} \text{ no corrections.} \tag{60} \]

We can ask how the finite spin conductance is possible at zero temperature. At the \(T=0 \) fixed point, basically all the right movers are reflected into the left movers. However, as mentioned previously, the spin does not see the boundary since the orientation of the spin remains the same either in the presence or in the absence of the boundary.

The charge transport. The charge current is given by

\[J_\rho(t) = e \frac{d}{dt} \langle \hat{N}_-(t) \rangle. \tag{61} \]

The time dependence of \(\hat{N}_- \) solely comes from the tunneling Hamiltonian \(H_T \). An efficient way of treating the dynamics of \(\hat{N}_- \) and the zero modes is discussed in Ref. 25. It is clear the only a nonvanishing contribution to current comes from the second order in tunneling Hamiltonian. In the interaction picture, with respect to \(H_\perp + H_{V,s} \),

\[(H_T)_{I}(t) = t_d \left[e^{-iVt}F e^{i\sum \phi_s(0,t)} + \text{H.c.} \right]. \tag{62} \]

The time evolution of \(\phi_s(0,t) \) is implicitly assumed and the subscript \(I \) is omitted. Since the Klein factor and the number operator \(\hat{N}_- \) do not obey the canonical commutation relation, the direct application of the Keldysh path integral is not feasible. Instead, it is better to evaluate the expectation values directly in the Dyson expansion of the time dependent perturbation theory. A straightforward calculation, employing

\[F^\dagger \hat{N}_- F = (\hat{N}_- - 1) \quad \text{and} \quad F^\dagger \hat{N}_+ F = (\hat{N}_+ + 1), \]

shows that

\[\langle \hat{N}_-(t) \rangle = 2t_d^2 \int_{-\infty}^{t} dt' \int_{-\infty}^{t} dt'' \sin \left(t'' + C(t' - t'') \right) \sin \left(t' - C(t'' - t') \right), \tag{63} \]

where \(C(t) \) is given by Eq. (39). Now, using the explicit result of \(C(t) \), we get

\[J_\rho(t) \sim e^2 \int_{0}^{\infty} dt' \frac{\sin(eVt')}{(t'^2 + t'')^{1/K} \left(\sin \left(t'\pi/\beta \right) \right)^{2/K}}. \tag{64} \]

From the above result, the charge conductance at finite \(T \) easily follows,

\[G_\rho = c_1 e^2 t_d^2 T^{2/\nu} \frac{1}{2K-2}, \tag{65} \]

where \(c_1 \) is a constant. Now, let us compare our results [Eqs. (60) and (65)] with those of the spinful LL. The charge and the spin conductance of spinful LL in the strong scattering regime are given by [see Eqs. (4.21) and (4.26) of Ref. 15]

\[G_\rho(T) \sim d_1 e^2 t_d^2 T^{1/K} \frac{1}{\nu K}, \tag{66} \]

where \(d_1 \) are constants. Again, the charge transport of 1D ASF in the strong scattering regime is consistent with that of a spinless LL, while the spin transport is radically different. The spin current of the spinful LL is degraded by impurities while that of ASF is not.

VI. SUMMARY AND DISCUSSIONS

In this paper, we have investigated the effects of a spinless impurity on the transport properties of 1D ASF. Due to the strong spin-charge mixing effect, the spin transport is not affected by the impurity, which is radically different from that of ordinary spinful LL, where the spin current is equally strongly degraded by impurity as the charge current. On the other hand, the charge transport is essentially identical with that of the spinless LL. The results of this paper can be verified by direct transport measurements or by the recently developed momentum-selective tunneling transport measurements. 27-29

ACKNOWLEDGMENTS

This work was supported by Grant No. R01-2005-000-10352-0 from the Basic Research Program of the Korean Science and Engineering Foundation and by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (KRF-2005-070-C0044).

Note that in Eq. (5) the subleading corrections proportional to $|k \pm k_F|$, arising from the linearization of matrix elements u_k and v_k^*, are ignored at low energy.
All of the oscillating terms of the type e^{i2kFx} are neglected upon spatial integration. Also, the boundary terms $\theta(\pm L/2)$ are irrelevant to transports and are set to zero.
Note that the phase field ϕ of Ref. 15 is the spin boson field. See Eq. (2.2) of Ref 15. Thus, $\theta_{\text{ours}} = \theta_{\text{Ref. 15}}$ and $\theta_{\text{ours}} = \phi_{\text{Ref. 15}}$.